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ALGORITHM OF THE ZONAL SOLUTION OF 

RADIATION--CONDUCTION HEAT-TRANSFER PROBLEMS 

V. V. Volkov, V. G. Lisienko, 
and A. L. Goncharov 

UDC 536.3 

A numerical method is proposed to compute the stationary radiation--conduction 
heat transfer in semitransparent materials on the basis of a zonal approach. 

The development of methods to compute the radiation--conduction heat transfer [i] is 
of great value for many thermal-engineering applications. The use of high-speed electronic 
computers with sufficient mathematical support permits the execution of a penetrating com- 
putational theoretical analysis of this kind of heat transfer in absorbing inhomogeneous 
media with a detailed accounting of the frequency--temperature dependence of the optical 
characteristics in both the bulk and on the boundaries of the radiating system [2-5]. Great 
attention is paid to overcoming the mathematical difficulties in solving radiation--conduc- 
tion heat-transfer (RCT) problems in the presence of semiopacity of the boundary surfaces 
[4, 5], as well as moving phase interfaces [6]. 

It should be noted, however, that the high level of detail achieved in computations in 
[2-6] is as yet realized for the one-dimensional plane-parallel case. Nevertheless, the 
need to produce computational methods permitting the analysis of RCT in two- and three-dimen- 
sional systems of different configuration is already overdue. Hence, by taking into account 
the difficulties of realizing exact formulations of complex heat-transfer problems for 
arbitrary volume geometry conditions, the prospects of approximate zonal methods [l]based on 
the approximation of the initial radiation integral equations by a system of algebraic equa- 
tions [7] are noted. ~anwhile, the inadequately extensive utilization of these methods in 
the theory of complex heat transfer is indicated in [i]. An analysis of foreign investiga- 
tions of the application of approximate methods of solving complex heat-transfer problems 
in bulk systems is presented in [8], and reduces to recommendations to utilize the so-called 
method of generalized angular coefficients in the RCT domain in [8]. The expediency of 
using the statistical testing (Monte Carlo) method, whose efficiency is demonstrated in a 
number of examples, is indicated in [8] for the determination of the generalized angular 
coefficients as well as the radiation exchange coefficients for the solution of different 
complex heat-transfer problems. In particular, the simplicity and phzsical nature of the 
solution of problems with complex bulk geometries of the radiating systems by the method 
mentioned are noted. The prospects of utilizing the Monte Carlo method to model radiation 
transport processes are also noted in [i]. 

The results of trying out the algorithm for the approximate solution of RCT problems on 
the basis of a zonal approach [7, 9] and the utilization of the Monte Carlo method to deter- 
mine the radiation exchange coefficients [i0, ii], as well as a finite-difference scheme to 
take account of heat transfer by heat conduction [12] are presented in this paper. The 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 41, No. 6, pp. 1094-1102, December, 
1981. Original article submitted September 29, 1980. 
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Dimensionless temperature distributions in a 
plane layer of absorbing and radiating media under com- 
bined heat transport by heat conduction and radiation 
(To =I.0; ~z =~2 =i.0): a) 01 =0.5, 02 =i.0; b) 01 =0, 
82 =I.0. I) Exact computation [8, 14]; II) zonal solu- 
tion for 3000 tests; III) zonal solution for i000 tests; 
IV) approximate method of generalized angular radiation 
coefficients [8]. 

distinguishing feature of the algorithm developed is the assurance of sufficient generality 
in modeling the RCT in two- and three-dimensional systems of arbitrary geometry, with selec- 
tivity and radiation scattering as well as the inhomogeneities in the optical and thermo- 
physical characteristics taken into account. 

The equation of energy conservation under the combined effect of heat conduction and 
radiation in an absorbing (radiating) medium and heat-transfer stationarity conditions can 
be written as follows: 

div [~(r, T) grad T ( r ) ] - - d i v ~  + h(r) = 0. (1) 

The algorithm proposed for the solution of this equation for systems with bulk geometry can 
be separated into four steps. 

i. In the first step, the generalized angular coefficients between all the computa- 
tional sections isolated in the system, both bulk and surface, are evaluated by the Monte 
Carlo method for absorption coefficients (or attenuation factors in the case of a scattering 
medium) given in the medium. Finite volumes are the computational sections in the bulk of 
the model in the case of utilizing the Monte Carlo method, with partition of the space into 
regions [i0], or the nodes of the finite-difference mesh directly for a nodal partition and 
nonlinear geometry [ii]. It should be noted that in the case of the partition into regions, 
when the mid-zonal generalized angular coefficients are evaluated, the nodes of the finite- 
difference mesh are placed at the centers of gravity of the geometric figures forming the 
bulk and surface zones. 

2. Later, in conformity with the assumption about diffuseness of the radiation and 
reflection by surfaces as well as about the isotropy of scattering in the bulk during the 
passage from the generalized to the constitutive angular coefficients, so]ution of a system 
of linear algebraic equations is used [9, 13]. The solution of the system of linear equa- 
tions in this algorithm is by an iteration method for which the initial approximation is a 
matrix of generalized angular coefficients. 

When using a three-dimensional matrix of dimension z x m x m of selective constitutive 
angular coefficients, the divergence qR for the i-th volume can be written as follows 

(div qR)' = vil i=1 ~ ~-, ~""'amAXkv'i'q'Ax~ (~ ~k'I I~dg --~A~k( I~ . (2) 

Using the concept of total radiation exchange coefficients with respect to the spectrum aZij 
[9], expression (2) can be represented in an abbreviated form more convenient for calcula- 
tional procedures 
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Fig. 2. Influence of radiation scattering (a: N=0.5; 
ci = E2 = 1.0) and emissivity of the boundary surfaces 
(b: N=0.1, Sc =0.5) on the temperature distribution 
in the layer: i) Exact computation [14]; 2) zonal 
solution. For a: I) Sc=O; II) 0.5; III) I; IV) 0.9; 
b: I) sl =0, s2 =I; II) el =~2 =0.5; III) El =s2 =0.I. 

(divqn)i ,~  z 4 ai /T I ,  i =  1, m~, 
f=l (3) 

. .A%heAk h Ak k . 
a~ .=4G0  ~ . i  hi ~i , (4)  

h = l  

: ~ h'a% t~a% 1) ~/a%. (5) 
t t  

' h = l  

o~ k = ~ . (6) 
Ak h 

3. In the next step, the matrices of the conductive heat transfer coefficients are 
formed which can easily be used to calculate the divergence of the heat-conduction flux 
vector in any bulk node of the computational model. 

By using numerical differentiation based on the method of finite differences [12], both 
the first derivative of the temperature with respect to the coordinate (the heat flux) and 
the second derivative (the divergence of the heat flux) can be expressed in the form of 
an algebraic sum of products of the appropriate differentiation coefficients by the value 
of the temperature of nodes surrounding the node i. Thus, for instance, for the one-dimen- 
sional case 

{div [~ (x, T) grad T (x)l} = - ~ x  ki ~ i=z 

Here  l ,  n i s  t he  node  number  t a k i n g  i n t o  a c c o u n t  t h a t  i i s  i n  t h e  r a n g e  ( l ,  n ) .  

4.  S u b s t i t u t i n g  (3) and (7) i n t o  t h e  i n i t i a l  e n e r g y  e q u a t i o n  (1) f o r  a s t a t i o n a r y  h e a t -  
transfer process, we arrive at a nonlinear algebraic equation with a free term. On the 
whole, the heat-transfer model is a system of m nonlinear thermal balance and heat-trans- 
mission equations of the following kind: 

for the bulk zone i 

m 

i=1 : = t  

----0, i = 1  . . . . .  m~; 

the heat flux balance is considered 

n 

A~i T~. .i- E b[i T j  + q~ = O, i = m,  -q-1, . . . .  m. 
i 

i=I j=t  

(8) 

(9) 

for the surface zone, 
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Here A~j are the radiation exchange factors for the surface zones 

z 

~ fA~ h ~ A ~  �9 (i0) A~ : a0 ~ -ii i ' 
k = l  

~A~ k (Ii) 

h=l 

Let us note that (9) for the surface zones in contact with a semiopaque medium is a 
record of the boundary conditions for the solution of the energy equations (I) that are 
formed during the solution of the system of nonlinear equations (8) and (9). The boundary 
temperature values, therefore, taken as unknown in theconditions ofthe problem, permit exten- 
sion of the analysis when investigating the influence of the external effects (irradiation, 
blowing, etc.). Taking convection into account is by including the convective heat-elimina- 
tion factor in the appropriate linear terms in the summation in (8) and (9). The numerical 
solution of the system of nonlinear equations'(8) and (9) is easily realized on an electro- 
nic computer by using a rapidly convergent iteration procedure based on the Newton method 
[8].  

To t e s t  t h e  p r o p o s e d  a l g o r i t h m ,  t h e  r e s u l t s  o f  c o m p u t a t i o n s  by  t h i s  m e t h o d  f o r  f i x e d  
v a l u e s  o f  t h e  b o u n d a r y  s h e l l  p a r a m e t e r s  w e r e  c o m p a r e d  w i t h  t h e  d a t a  o f  e x a c t  n u m e r i c a l  s o l u -  
t i o n s  o f  V i s c a n t a  and  G r o s c h  a s  w e l l  a s  Lee a nd  O z i s i k  p r e s e n t e d  i n  [8 ,  1 4 ] .  The c o m p u t a -  
t i o n s  were  p e r f o r m e d  f o r  a d i f f e r e n t  n u m b e r  o f  t e s t s  (1000 and  3000 p e r  z o n e ) ,  as  w e l l  as  
i n  a b r o a d  r a n g e  o f  v a r i a t i o n  o f  t h e  r a d i a t i o n  and  c o n d u c t i v e  p r o p e r t i e s  o f  t h e  medium.  The 
comparison displayed good agreement between the results obtained by the exact and the 
described approximate methods. Thus, known curves of the relative temperature distribution 
e(T) in a layer are represented in Fig. la for pure radiation (N = 0) and the case of radia- 
tion interaction with heat conduction (N = 0.01) [14], on which the temperature values 
obtained are superposed at the nodes of a finite-difference mesh, which can be estimated by 
partitioning the x axis into computational sections. It is seen from Fig. la that the 
accuracy of the prop2sed method is determined mainly by the accuracy in computing the radia- 
tion component (div qR)i, whose numerical value depends on the size of the random sample 
because of the statistical nature of the calculation. Thus, e.g., a threefold increase in 
the number of tests would permit a reduction in the error of calculating the local 
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temperature in the layer from 5% for given values of the governing parameters to errors not 
exceeding 1% (Fig. la). The computation time for this on a low-speed machine (Minsk-22M) in 
combination with the time expended in solving the system of nonlinear equations did not 
exceed 1 h. 

It should be noted that the inaccuracy in the matrix of the generalized angular coeffi- 
cients obtained directly by the Monte Carlo method is a source of error in all the further 
computations as the values of the parameters being given vary (the wall temperature relation- 
ship, the heat conductivity of the medium, the radiation characteristics of the surfaces and 
bulk). However, a further increase in the number of tests did not result in any refinement 
of the results because of the limited possibilities being used in the program of the pseudo- 
random number transducers. 

A comparison between the proposed algorithm and other approximate methods of computing 
the temperature fields in a layer of a radiation heat-conducting medium is of interest. 
Results of calculations by Howell when using the so-called method of generalized angular 
coefficients [8] are superposed in Fig. ib in addition to the curves obtained by the exact 
and zonal solutions. As is seen from the figure, the Howell method is more approximate than 
the method proposed. The circumstance that radiation terms governing the mutual transport 
of radiation energy between volumes of the medium with unknown temperatures (according to 
the formulation of the problem) are not used in writing the energy equation for the volume 
element of the medium is the basis of the error in the Howell computational scheme. The 
influence of these radiation terms in the Howell method is in the fractions of effective 
radiation flux from the surfaces that take account of radiation energy transfer between 
volume elements of the medium, however, in conformity with only the temperature profiles 
obtained in the absence of heat conductivity (N = 0) [8]. A result is the chronic exaggera- 
tion of the temperature on the layer for N > 0 (Fig. ib). 

The possibility of obtaining results with acceptable accuracy is shown in Fig. 2 for 
the case of a dissipative medium and existing substantial radiation reflection at the boun- 
daries. As computations showed, the error in determining the temperature fields in a layer 
with the boundary temperature relationships el =0 and 02 = 1 diminishes as the dissipative 
properties of the medium increase (Fig. 2a). This is a completely evident fact since the 
radiation ceases to influence the temperature distribution which is here linear in form as 
in the case of just heat conduction (N =~), as the Schuster criterion approaches one (purely 
dissipative medium). Upon introducing diffuse reflection on the boundaries into the compu- 
tation, the error of the calculation increases as the surface emissivity increases (Fig. 2b). 
This can be explained by the fact that as the constitutive angular coefficients are being 
found by solving a system of linear equations, the inaccuracy contained in the initial matrix 
of generalized angular coefficients obtained by the statistical testing method accumulates. 

Therefore, the computations performed showed that the zonal approach used in the presen- 
ted algorithm to solve RCT problems permits results to be obtained for a sufficiently rough 
partition of the space into computational sections, that will agree satisfactorily with the 
exact solutions. The reserve in the rise in accuracy is the perfection of the procedure 
to determine the generalized angular coefficients in order to reduce them in complete confor- 
mity with the reciprocity law. 

In thermal-engineering applications, the accuracy attained in this paper in calculating 
the temperature fields (Figs. 1 and 2) can satisfy the demands of engineering computations. 
Sufficiently rough assumptions are frequently made in these latter, which are related either 
to the complete transparency taken for the material or to the unjustified utilization of a 
diffusion approximation model for low and medium optical density of the medium. Presented 
below as an illustration are certain results of solving two applied problems, which are 
obtained by using the zonal approximation algorithm presented above. In particular, the 
problem of computing the temperature conditions for the process of growing alkali-halide 
single crystals from a NaI melt by the method of the moving isotherm in shaft resistance 
furnaces is considered [15].* 

The crystallization process occurs over a sufficiently long time in electric furnaces. 
The temperature field governs the rate of crystal growth and its quality. In this 

*The recommendations of Dr. G. K. Rubin and Kand. V. Ya. Lipov (All-Union Scientific- 
Research Institute of Electrothermal Equipment) were used in compiling the mathematical 
model and formulating the problem. 
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connection, the technological requirements on the crystallization regime are sufficiently 
high. The temperature field is controlled during crystal growth by changing the temperature 
of the heater and the Consumption of the cooling gas. In this paper, the influence of the 
mentioned effects on the temperature field formation in a semitransparent material in order 
to make a well-founded selection of the furnace temperature regimes is investigated by using 
a one-dimensional mathematical model. Certain curves of the temperature state of the mate- 
rial in the crystallization stage are presented in Fig. 3a. The values of the control para- 
meters, the heater temperature thand the consumption of the cooling gas expressed in terms 
of the convective heat elimination factor ~c, are also presented in Fig. 3a. The tempera- 
ture of the lower shell (refrigerator) was 50~ here in all the modifications. 

An interesting phenomenon was detected as a result of the computations, viz., that the 
temperature gradient in the crystallization zone increases as a small solid phase layer 
appears (curves ~c = 1 and 5 W/m2.K at t h = 950~ Fig. 3a). This can be explained by the 
increase in radiation heat conduction in the zone of less optically dense solidifying mate- 
rial, and as a result, its more intense cooling. Another interesting fact of the material 
cooling process was that the efficiency of the influence of the blowing on the formation of 
a definite temperature gradient was reduced somewhat at the temperature drop diminished 
between the refrigerator and the heater (Fig. 3a). In connection with the phenomena noted, 
some recommendations can be given on controlling the thermal mode of the crystallization 
process. In particular, at the time of the appearance of the solid phase it is expedient 
to have a sufficient consumption of cooling gas so as to maintain the reduction in blowing 
intensity efficiently at the necessary level to increase the temperature gradient in this 
zone at the initial instant of the crystallization. The heater temperature later diminishes 
sufficiently smoothly with the appearance of a significant solid phase layer (30-40% of the 
whole layer thickness), keeping the cooling gas consumption negligible. 

The algorithm of the zonal solution of RCT problems was also used to compute the tem- 
perature field in slags used in the continuous ingot casting machine (CICM) crystallizers. 
The problem of selecting the best slag composition to assure the necessary heat insulating 
and lubricating properties by their thermophysical and radiation characteristics wasposed. 

At this time the slags used in CICM are opaque and the heat transfer therein is con- 
sidered with the effective coefficient of heat conduction taken into account. Temperature 
dependences of the bulk absorption coefficient were constructed according to the relation- 
ship [8, 14] 

Kai -- 16 60T~ (12) 
3 %R 

in computations by means of the proposed algorithm on the basis of data about the effective 
and radiation heat conductivity.* 

A one-dimensional RCT model in a 0.002-m-thick layer with a characteristic bunching 
of the finite-difference mesh in the gradient region (near the crystallizer wall being 
cooled, Fig. 3b) was used for the analysis. The temperature of the ingot surface was fixed 
(hot wall, Tin=1743~ as was the temperature of the cooling water (Tw=313~ The tem- 
perature of the inner crystallizer surface was desired and depended, as did the temperature 
distribution in the layer, on the optical and thermophysical properties of the slag. The 
emissivities of the ingot and crystallizer surfaces were taken at 0.8 and 0.7, respectively. 

The temperature distribution curves in the slag are presented in Fig. 3b. Slag 1 is 
transparent in the whole temperature range. As the temperature grows the %R for this slag 
rises substantially, specifying arelatively high "radiation" conductivity in the temperature 
domain exceeding IIO0~ (Fig. 3b). The coefficient of molecular heat conductivity in the 
temperature band under investigation varies negligibly (from 2 to 4 W/m.K) almost linearly. 
Slag 2 becomes negligibly transparent at temperatures above II00~ and the coefficient of 
molecular heat conductivity has no monotonically rising temperature dependence. At low tem- 
peratures it exceeds the corresponding coefficient for slag 1 slightly, while it is somewhat 
lower in the high temperature domain. This is due to its good insulating properties in 
layers adjoining the ingot surface. Slag 3 is analogous to slag 2 in its radiation heat- 
conductivity component. However, it has a high molecular heat conductivity in the medium 

*The experimental data of M. V. Frolov (Steel metallurgy department of the Ural Polytechni- 
cal Institute) were used. 
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and low temperature domains (below 800~ This explains the specific nature of the tem- 
perature curve in the gradient domain (Fig. 3b). 

On the whole, the analysis of the heat transfer through a slag layer permitted the 
clarification of the advantages of slag 2, which assures a reduction in the forces directed 
at dragging the metal from the crystallizer because of the most stable liquid phase layer 
in the area of contact with the ingot. At the same time, this slag yields a certain reduc- 
tion in the heat flux to the crystallizer wall, which explains the lower heat losses. 

NOTATION 

%, coefficient of heat conductivity; r, a coordinate; T, temperature; qR, radiation 
heat flux vector; h, bulk power of the internal energy sources; z, number of spectral ranges; 
ml, number of bulk zones; m, total number of bulk and surface zones; fij, referred constitu- 
tive angular coefficient; Ka, absorption coefficient; A%k, k-th spectral band; V, volume; 
Io %, spectral intensity of absolutely black radiation; aZij, total radiation transfer coef- 

, and b~, coefflclents of single ficient in the spectrum; ~o Stefan--Boltzmann constant" bi~ " " " " ' • 

and double differentiation, respectively, of the temperature with respect to the coordinate; 
E, surface emissivity; qi, quantity of heat transferred from zones with known temperature; 
N, radiation conduction parameter; ~, dimensionless temperature; To, optical thickness of 
the layer; Sc, Schuster criterion; %R, coefficient of radiation heat conductivity. 
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TEMPERATURE FIELD OF LAMINAR-INHOMOGENEOUS BEDS 

N. N. Smirnova UDC 536.242:66.015.23 

Results are presented of a theoretical investigation of the temperature field of 
oil beds with a nonuniform structure, with applications in the technology of 
selective thermoinjection. 

Heat transfer accompanying the filtration of liquid in permeable media is the physical 
basis of many processes in mining, the power industry, and chemical engineering. 

The formulation of multidimensional problems is a particularly urgent matter. Such 
problems include those concerning filtration in an infinite porous medium with point sources 
and sinks and in a plane porous bed with heat transfer to the roof and floor; problems for 
collectors of different form, taking free convection into account; etc. 

A possible approach to the solution of such problems consists in the use of the idea of 
"homogenization" of the heterogeneous medium [I], analogously to the methods of the mechan- 
ics of interpenetrating media [2] or in the approximation of instantaneous temperature 
equalization of the two phases [3]. On this basis, fairly many problems may be solved, hut 
in practice they give rise to a series of serious objections. For example, one unsolved 
problem is the choice of the heat-transfer coefficient at the interface of the two phases, 
since this is not simply the heat-transfer coefficient between the individual elements of 
the filling and the liquid, but a coefficient or function which must take into account all 
the arbitrariness of the given approach. In addition, the transfer coefficients in the equa- 
tions are not actually the weighted means of the molecular coefficients, as concluded, for 
example, in [4, 5]. 

Processes of nonsteady heat transfer accompanying one-dimensional filtration in fillers 
consisting of small particles with low thermal resistance are usually described using the 
formulation of the problem first proposed in [6, 7]. However, the results obtained are dif- 
ficult to use in developing engineering methods of calculation for the heat transfer in more 
complex multidimensional filtration regions. 

In [8], the problem of describing the heat conduction for an analogous physical situa- 
tion was considered in more detail on the basis of a generalized equation for one dependent 
variable obtained in [8]. 

In mining thermophysics (in developing methods of creating systems for the extraction 
of petrogeothermal resources, and also thermal methods of treating petroleum beds, etc.), 
it is necessary to develop a method of calculating the heat transfer accompanying filtration 
in collectors of complex geometry with large structural elements. In constructing the model 
in this case, it is more correct to use a formulation of the problem in which the finite 
heat conduction of the elements of the permeable bed is taken into account (see, e.g., [9- 
ii]). A more detailed review of methods of calculating the nonsteady heat transfer accom- 
panying one-dimensional filtration is given in [12]. 

The use of accurate solutions of heat-conduction problems for particles of the bed and 
the surrounding rock mass reduces the system of energy equations to an integrodifferential 
equation, which is not readily generalized to the case of multidimensional filtration. 
Therefore, in [12], a new approach to the solution of problems of this type was proposed. 
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